R-Code<\/strong><\/p>\n\r\n# Goal: Using data from Yahoo finance, estimate the Fama-French Factors for any security\r\n# using monthly returns\r\n\r\nlibrary(tseries)\r\n\r\n# Load FF factor returns\r\nstartyear = 2000;\r\nstartmonth = 11;\r\nendyear = 2010;\r\nendmonth = 10;\r\n\r\nstart = (startyear-1926.5)*12+startmonth;\r\nstop = (endyear - 1926.5)*12+endmonth;star\r\n\r\nff_returns = read.table("F-F_Factors_monthly.txt")\r\nrmrf = ff_returns[start:stop,2]\/100\r\nsmb = ff_returns[start:stop,3]\/100\r\nhml = ff_returns[start:stop,4]\/100\r\nrf = ff_returns[start:stop,5]\/100\r\n\r\n# Load Fund Data\r\nprices <- get.hist.quote("VTI", quote="Adj", start="2000-10-30", retclass="zoo")\r\nprices <- na.locf(prices) # Copy last traded price when NA\r\n\r\n# To make weekly returns, you must have this incantation:\r\nmonthly.prices <- aggregate(prices, as.yearmon, tail, 1)\r\n\r\n# Convert monthly prices to monthly returns\r\nr <- diff(log(monthly.prices))\r\nr1 <- exp(r)-1\r\n\r\n# Now shift out of zoo to become an ordinary matrix --\r\nrj <- coredata(r1)\r\nrj <- rj[1:120]\r\nrjrf <- rj - rf\r\n\r\nd <- lm(rjrf ~ rmrf + smb + hml) # FF model estimation.\r\nprint(summary(d))\r\n\r\n<\/pre>\nOctave Code for Calculating Factor Loadings and Returns for Fama-French 25 Portfolios<\/strong><\/p>\n\r\nclear all; % clear data from Octave\r\nclose all; % close all open plot windows\r\n\r\n% Load Fama-French Data\r\nff_data = load('25_Portfolios_5x5_monthly_2.txt');\r\n% Load FF Factor Mimicking Portfolios\r\nff_facts = load('F-F_Factors_monthly.txt');\r\n\r\n% Starting point changed to January 1932 to avoid missing data\r\nff_data = ff_data(67:end,:); % start after NAs end\r\nff_facts = ff_facts(67:end-1,:); % start after NAs end, factors had one extra sample, so used end-1\r\n\r\n% Remove date column\r\nr = ff_data(:,2:end);\r\n% Remove date and risk free\r\nff3f = ff_facts(:,2:end);\r\n\r\n% Prompt for User Input to get plotting range\r\nstartyear = input('Enter Starting Year between 1932 and 2010: ')\r\nstartmonth = input('Enter Starting Month 1-12: ')\r\nendyear = input('Enter Ending Year between 1932 and 2010: ')\r\nendmonth = input('Enter Ending Month 1-12: ')\r\nplottitle = input('Enter Title for Plot: ','s')\r\n\r\n% Calculate starting and ending row\r\nstart = 12*(startyear - 1932) + startmonth;\r\nendpoint = 12*(endyear-1932) + endmonth;\r\n\r\n% Extract Desired Data\r\nr = r(start:endpoint,:);\r\nff3f = ff3f(start:endpoint,:);\r\nrmrf = ff3f(:,1)\/100;\r\nsmb = ff3f(:,2)\/100;\r\nhml = ff3f(:,3)\/100;\r\nrf = ff3f(:,4)\/100;\r\n\r\n% Run 25 Fama-French Regressions\r\nrx = r.\/100 - repmat(rf,1,25);\r\n\r\n% Run FF regressions on all portfolios\r\nK = 3\r\nT = size(rx,1)\r\nX = [ones(T,1) rmrf hml smb];\r\nb = X\\rx;\r\ne = rx-X*b;\r\nsigma = cov(e);\r\nu = rx-X*b;\r\ns2 = (T-1)\/(T-K-1)*var(u)'; % this is a vector of the variance of the errors\r\n\r\nmx = inv(X'*X);\r\ndmx = diag(mx); % we\u2019re interested in standard errors,\r\n\r\n% the diagonals of the covariance matrix of bs\r\nsiga = (s2*dmx(1)).^0.5; % std err of alpha, beta\r\nsigb = (s2*dmx(2:end)').^0.5; % s2 is a column vector of 25. dmx\u2019 is a\r\n % row vector corresponding to factors.\r\n % this produces a matrix the same size as\r\n % the b coefficients.\r\nsig_beta = sigb(:,1);\r\nsig_h = sigb(:,2);\r\nsig_s = sigb(:,3);\r\n\r\nR2 = 1-s2.\/(std(rx).^2)';\r\n\r\n% Pull out the regression factors\r\nff_alpha = b(1,:);\r\nff_beta = b(2,:);\r\nh = b(3,:);\r\ns = b(4,:);\r\n\r\n% Calculate Arithmetic Mean for each of 25 portfolios over range\r\narithmeans = mean(r);\r\n\r\n% Calculate Geometric Mean for each of 25 portfolios over selected range\r\ngeoreturns = r.\/100 + 1;\r\ngeomeans = 100*(exp(mean(log(georeturns)))-1);\r\n\r\n% Select if Geometric or Arithmetic mean is used by adjusting comments\r\n%meanreturns = arithmeans; % uncomment to use arithmetic means\r\nmeanreturns = geomeans; % uncomment to use geometric means\r\n\r\n% Expand 5x5 data to 10x10 for use in surface plot function\r\nreturns = [meanreturns ; meanreturns];\r\nreturns = reshape(returns,10,5);\r\nreturns = [returns;returns]\r\nreturns = reshape(returns,10,10);\r\n\r\n% beta can be used for surface plot of beta\r\nbeta_ff = [ff_beta;ff_beta]\r\nbeta_ff = reshape(beta_ff,10,5);\r\nbeta_ff = [beta_ff;beta_ff];\r\nbeta_ff = reshape(beta_ff,10,10);\r\n\r\n% s; s_ff can be used for surface plot of size factor\r\ns_ff = [s;s]\r\ns_ff = reshape(s_ff,10,5);\r\ns_ff = [s_ff;s_ff];\r\ns_ff = reshape(s_ff,10,10);\r\n\r\n% h; h_ff can be used for surface plot of value factor\r\nh_ff = [h;h]\r\nh_ff = reshape(h_ff,10,5);\r\nh_ff = [h_ff;h_ff];\r\nh_ff = reshape(h_ff,10,10);\r\n\r\n% Define x and y values\r\nx = [0 0.999 1 1.999 2 2.999 3 3.999 4 5];\r\ny = [0 0.999 1 1.999 2 2.999 3 3.999 4 5];\r\n\r\n% Create x-y mesh for surface plot\r\n[xx,yy] = meshgrid(x,y);\r\n\r\n% Generate Plot\r\nsurf(xx,yy,returns)\r\nxlabel('Size','fontsize',20)\r\nylabel('Value','fontsize',20)\r\n%zlabel('Arithmetic Average Monthly Return (%)','rotation',90,'fontsize',20)\r\n%zlabel('Geometric Average Monthly Return (%)','rotation',90,'fontsize',20)\r\ntitle(plottitle,'fontsize',36)\r\naxis([0 5 0 5 min(0,min(meanreturns)-.1) max(2,max(meanreturns)+0.01)])\r\n\r\n% Size Lables for corner portfolios\r\nline([4.5 4.5],[0.5 0.5],[meanreturns(21) meanreturns(21)+0.1])\r\ntext(4.5,0.5,meanreturns(21)+0.15,'LG','horizontalalignment','center','fontsize',18)\r\nline([4.5 4.5],[4.5 4.5],[meanreturns(25) meanreturns(25)+0.1])\r\ntext(4.5,4.5,meanreturns(25)+0.15,'LV','horizontalalignment','center','fontsize',18)\r\nline([0.5 0.5],[4.5 4.5],[meanreturns(5) meanreturns(5)+0.1])\r\ntext(0.5,4.5,meanreturns(5)+0.15,'SV','horizontalalignment','center','fontsize',18)\r\nline([0.5 0.5],[0.5 0.5],[meanreturns(1) meanreturns(1)+0.1])\r\ntext(0.5,0.5,meanreturns(1)+0.15,'SG','horizontalalignment','center','fontsize',18)\r\n\r\n% ETFs\r\nline([4.55 4.55],[1.1 1.1],[meanreturns(22) meanreturns(22)+0.15])\r\ntext(4.55,1.1,meanreturns(22)+0.18,'SPY','horizontalalignment','center','fontsize',18)\r\n\r\nline([4.75 4.75],[1.25 1.25],[meanreturns(22) meanreturns(22)+0.1])\r\ntext(4.75,1.25,meanreturns(22)+0.15,'DIA','horizontalalignment','center','fontsize',18)\r\n\r\nline([3.5 3.5],[0.1 0.1],[meanreturns(16) meanreturns(16)+0.1])\r\ntext(3.5,0.1,meanreturns(16)+0.15,'QQQQ','horizontalalignment','center','fontsize',18)\r\n\r\nline([4.5 4.5],[1.5 1.5],[meanreturns(22) meanreturns(22)+0.18])\r\ntext(4.50,1.5,meanreturns(22)+0.2,'IVE*','horizontalalignment','center','fontsize',18)\r\n\r\nline([1.6 1.6],[1.7 1.7],[meanreturns(7) meanreturns(7)+0.25])\r\ntext(1.6,1.7,meanreturns(7)+0.3,'IWM*','horizontalalignment','center','fontsize',18)\r\n\r\nline([1.7 1.7],[3.55 3.55],[meanreturns(9) meanreturns(9)+0.1])\r\ntext(1.7,3.55,meanreturns(9)+0.15,'IWN','horizontalalignment','center','fontsize',18)\r\n\r\nline([1.65 1.65],[1.85 1.85],[meanreturns(7) meanreturns(7)+0.1])\r\ntext(1.65,1.85,meanreturns(7)+0.15,'IJR','horizontalalignment','center','fontsize',18)\r\n\r\nline([1.6 1.6],[2.85 2.85],[meanreturns(8) meanreturns(8)+0.1])\r\ntext(1.6,2.85,meanreturns(8)+0.15,'IJS','horizontalalignment','center','fontsize',18)\r\n\r\nline([2.9 2.9],[4.6 4.6],[meanreturns(15) meanreturns(15)+0.1])\r\ntext(2.9,4.6,meanreturns(15)+0.15,'IYR','horizontalalignment','center','fontsize',18)\r\n\r\nline([3.4 3.4],[1.25 1.25],[meanreturns(19) meanreturns(19)+0.1])\r\ntext(3.4,1.25,meanreturns(19)+0.15,'MDY','horizontalalignment','center','fontsize',18)\r\n\r\n% Color range set from 0 to 1.6 rather than allowing autoscale.\r\n% This is done for easier comparison between plots, but colors will\r\n% max out for values above 1.6 or below 0.\r\n% For arithmetic averages, I think a range of 0 to 2 works better\r\ncaxis([0 1.6]);\r\nview(50, 25);\r\n% top view\r\n%view(270,90);\r\nreplot\r\n\r\n<\/pre>\nRegression Result Details:<\/strong><\/p>\nETF Regressions (10-yr Monthly; November 2000 thru October 2010):<\/strong><\/p>\nSPY:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept) -0.0008725\u00a0 0.0005321\u00a0 -1.640\u00a0\u00a0\u00a0 0.104\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.9620172\u00a0 0.0110702\u00a0 86.901\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 -0.1292276\u00a0 0.0200597\u00a0 -6.442 2.78e-09 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.0120373\u00a0 0.0157662\u00a0\u00a0 0.763\u00a0\u00a0\u00a0 0.447\u00a0\u00a0\u00a0<\/p>\n
—\u00a0<\/p>\n
Residual standard error: 0.005643 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9862,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9858<\/p>\n
F-statistic:\u00a0 2763 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
DIA:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept)\u00a0 0.0009774\u00a0 0.0013106\u00a0\u00a0 0.746\u00a0 0.45730\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.8925274\u00a0 0.0272691\u00a0 32.730\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 -0.2162676\u00a0 0.0494128\u00a0 -4.377 2.65e-05 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.1189867\u00a0 0.0388367\u00a0\u00a0 3.064\u00a0 0.00272 **<\/p>\n
—<\/p>\n
Residual standard error: 0.0139 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9074,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.905<\/p>\n
F-statistic: 378.7 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
QQQQ:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept)\u00a0 0.0005339\u00a0 0.0021967\u00a0\u00a0 0.243\u00a0 0.80839\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 1.3260511\u00a0 0.0457057\u00a0 29.013\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.2930439\u00a0 0.0828208\u00a0\u00a0 3.538\u00a0 0.00058 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 -0.9161538\u00a0 0.0650942 -14.074\u00a0 < 2e-16 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.0233 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9196,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9175<\/p>\n
F-statistic: 442.3 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
IVE:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept) -0.0020639\u00a0 0.0009668\u00a0 -2.135\u00a0\u00a0 0.0349 *\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.9947619\u00a0 0.0201148\u00a0 49.454\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 -0.0528948\u00a0 0.0364488\u00a0 -1.451\u00a0\u00a0 0.1494\u00a0\u00a0\u00a0<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.2691649\u00a0 0.0286475\u00a0\u00a0 9.396 6.19e-16 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.01025 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9601,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9591<\/p>\n
F-statistic: 931.3 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
IWM:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept) -0.0019862\u00a0 0.0008238\u00a0 -2.411\u00a0\u00a0 0.0175 *\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 \u00a0\u00a00.9759772\u00a0 0.0171401\u00a0 56.941\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.8246550\u00a0 0.0310586\u00a0 26.552\u00a0 < 2e-16 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.1899842\u00a0 0.0244109\u00a0\u00a0 7.783 3.25e-12 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.008737 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9804,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9799<\/p>\n
F-statistic:\u00a0 1935 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
IWN:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept) -0.001577\u00a0\u00a0 0.001138\u00a0 -1.386\u00a0\u00a0\u00a0 0.169\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.876021\u00a0\u00a0 0.023686\u00a0 36.984\u00a0\u00a0 <2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.756015\u00a0\u00a0 0.042920\u00a0 17.614\u00a0\u00a0 <2e-16 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.606810\u00a0\u00a0 0.033734\u00a0 17.988\u00a0\u00a0 <2e-16 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.01207 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9588,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9577<\/p>\n
F-statistic:\u00a0\u00a0 899 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
IJR:<\/strong>\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0<\/p>\n(Intercept) -0.001384\u00a0\u00a0 0.001156\u00a0 -1.197\u00a0\u00a0\u00a0 0.234\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.913679\u00a0\u00a0 0.024063\u00a0 37.971\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.795130\u00a0\u00a0 0.043603\u00a0 18.236\u00a0 < 2e-16 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.301977\u00a0\u00a0 0.034270\u00a0\u00a0 8.812 1.43e-14 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.01227 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.958,\u00a0\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.957<\/p>\n
F-statistic: 882.8 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
IJS:<\/strong><\/p>\n(Intercept) -0.001711\u00a0\u00a0 0.001294\u00a0 -1.322\u00a0\u00a0\u00a0 0.189\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.914892\u00a0\u00a0 0.026932\u00a0 33.971\u00a0\u00a0 <2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.845430\u00a0\u00a0 0.048802\u00a0 17.324\u00a0\u00a0 <2e-16 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.483571\u00a0\u00a0 0.038356\u00a0 12.607\u00a0\u00a0 <2e-16 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.01373 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9511,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9499<\/p>\n
F-statistic: 752.7 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
IYR:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept) 0.0007802\u00a0 0.0039314\u00a0\u00a0 0.198\u00a0\u00a0 0.8430\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.9250019\u00a0 0.0817982\u00a0 11.308\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.4062537\u00a0 0.1482219\u00a0\u00a0 2.741\u00a0\u00a0 0.0071 **<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.8909395\u00a0 0.1164971\u00a0\u00a0 7.648 6.54e-12 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.04169 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.6629,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.6542<\/p>\n
F-statistic: 76.05 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
MDY:<\/strong><\/p>\n\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Estimate Std. Error t value Pr(>|t|)\u00a0\u00a0\u00a0<\/p>\n
(Intercept) 0.0009243\u00a0 0.0011596\u00a0\u00a0 0.797\u00a0\u00a0\u00a0 0.427\u00a0\u00a0\u00a0<\/p>\n
rmrf\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.9659343\u00a0 0.0241262\u00a0 40.037\u00a0 < 2e-16 ***<\/p>\n
smb\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.3705806\u00a0 0.0437178\u00a0\u00a0 8.477 8.49e-14 ***<\/p>\n
hml\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 0.1572083\u00a0 0.0343607\u00a0\u00a0 4.575 1.20e-05 ***<\/p>\n
—<\/p>\n
Residual standard error: 0.0123 on 116 degrees of freedom<\/p>\n
Multiple R-squared: 0.9501,\u00a0\u00a0\u00a0\u00a0 Adjusted R-squared: 0.9488<\/p>\n
F-statistic: 736.8 on 3 and 116 DF,\u00a0 p-value: < 2.2e-16<\/p>\n
Fama-French 25 Portfolios – Regression Results (Nov. 2000 – October 2010)<\/strong><\/p>\n\n
\n\n\t\n\t\tALPHA<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n |
\n\t\n\t\tSmall<\/td> | -0.68%<\/td> | -0.05%<\/td> | 0.01%<\/td> | 0.02%<\/td> | 0.16%<\/td>\n\t<\/tr>\n\t |
\n\t\t2<\/td> | -0.22%<\/td> | 0.03%<\/td> | 0.18%<\/td> | -0.09%<\/td> | -0.30%<\/td>\n\t<\/tr>\n\t |
\n\t\t3<\/td> | -0.08%<\/td> | 0.11%<\/td> | 0.30%<\/td> | 0.17%<\/td> | 0.37%<\/td>\n\t<\/tr>\n\t |
\n\t\t4<\/td> | 0.17%<\/td> | 0.20%<\/td> | 0.01%<\/td> | 0.15%<\/td> | -0.09%<\/td>\n\t<\/tr>\n\t |
\n\t\tLarge<\/td> | 0.04%<\/td> | 0.12%<\/td> | -0.11%<\/td> | -0.27%<\/td> | -0.18%<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\tALPHA (t-stat)<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | -2.41<\/td> | -0.28<\/td> | 0.07<\/td> | 0.16<\/td> | 0.96<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | -1.42<\/td> | 0.17<\/td> | 1.36<\/td> | -0.67<\/td> | -2.06<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | -0.58<\/td> | 0.71<\/td> | 1.83<\/td> | 0.88<\/td> | 1.69<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | 1.40<\/td> | 1.28<\/td> | 0.03<\/td> | 0.75<\/td> | -0.43<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | 0.41<\/td> | 0.86<\/td> | -0.69<\/td> | -2.06<\/td> | -0.68<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\tBETA<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | 1.18<\/td> | 0.98<\/td> | 0.83<\/td> | 0.77<\/td> | 0.98<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | 1.09<\/td> | 0.90<\/td> | 0.84<\/td> | 0.88<\/td> | 1.04<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | 1.09<\/td> | 0.96<\/td> | 0.89<\/td> | 0.93<\/td> | 0.97<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | 1.06<\/td> | 0.96<\/td> | 1.02<\/td> | 0.98<\/td> | 1.11<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | 0.95<\/td> | 0.86<\/td> | 0.90<\/td> | 0.90<\/td> | 1.07<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\tBETA (t-stat)<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | 20.003<\/td> | 28.263<\/td> | 27.927<\/td> | 24.682<\/td> | 28.526<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | 33.474<\/td> | 26.726<\/td> | 30.813<\/td> | 31.303<\/td> | 33.793<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | 40.148<\/td> | 29.188<\/td> | 25.975<\/td> | 22.508<\/td> | 21.314<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | 41.506<\/td> | 29.263<\/td> | 24.257<\/td> | 23.706<\/td> | 26.411<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | 52.533<\/td> | 30.54<\/td> | 28.014<\/td> | 33.053<\/td> | 19.277<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\th<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | -0.38<\/td> | 0.03<\/td> | 0.34<\/td> | 0.52<\/td> | 0.72<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | -0.37<\/td> | 0.16<\/td> | 0.43<\/td> | 0.58<\/td> | 0.90<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | -0.45<\/td> | 0.16<\/td> | 0.41<\/td> | 0.58<\/td> | 0.68<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | -0.38<\/td> | 0.27<\/td> | 0.45<\/td> | 0.54<\/td> | 0.83<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | -0.28<\/td> | 0.20<\/td> | 0.30<\/td> | 0.56<\/td> | 0.60<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\th (t-stat)<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | -4.52<\/td> | 0.61<\/td> | 8.08<\/td> | 11.65<\/td> | 14.77<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | -7.91<\/td> | 3.25<\/td> | 10.96<\/td> | 14.29<\/td> | 20.67<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | -11.55<\/td> | 3.47<\/td> | 8.28<\/td> | 9.83<\/td> | 10.51<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | -10.31<\/td> | 5.78<\/td> | 7.53<\/td> | 9.17<\/td> | 13.87<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | -10.96<\/td> | 5.04<\/td> | 6.59<\/td> | 14.36<\/td> | 7.59<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\ts<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | 1.18<\/td> | 1.07<\/td> | 0.94<\/td> | 0.98<\/td> | 1.06<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | 1.01<\/td> | 0.98<\/td> | 0.92<\/td> | 0.89<\/td> | 1.12<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | 0.74<\/td> | 0.57<\/td> | 0.47<\/td> | 0.43<\/td> | 0.66<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | 0.45<\/td> | 0.32<\/td> | 0.28<\/td> | 0.28<\/td> | 0.19<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | -0.19<\/td> | -0.12<\/td> | -0.02<\/td> | -0.10<\/td> | -0.23<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\ts (t-stat)<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | 11.11<\/td> | 17.09<\/td> | 17.53<\/td> | 17.47<\/td> | 17.08<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | 17.15<\/td> | 16.12<\/td> | 18.43<\/td> | 17.47<\/td> | 20.16<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | 14.96<\/td> | 9.57<\/td> | 7.61<\/td> | 5.76<\/td> | 7.98<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | 9.63<\/td> | 5.37<\/td> | 3.66<\/td> | 3.80<\/td> | 2.49<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | -5.95<\/td> | -2.40<\/td> | -0.32<\/td> | -2.08<\/td> | -2.29<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n\r\n\r\n\n\n\n\t\n\t\tR2<\/th> | Growth<\/th> | 2<\/th> | 3<\/th> | 4<\/th> | Value<\/th>\n\t<\/tr>\n<\/thead>\n | \n\t\n\t\tSmall<\/td> | 0.87<\/td> | 0.95<\/td> | 0.96<\/td> | 0.96<\/td> | 0.96<\/td>\n\t<\/tr>\n\t | \n\t\t2<\/td> | 0.93<\/td> | 0.93<\/td> | 0.92<\/td> | 0.91<\/td> | 0.90<\/td>\n\t<\/tr>\n\t | \n\t\t3<\/td> | 0.93<\/td> | 0.94<\/td> | 0.90<\/td> | 0.87<\/td> | 0.88<\/td>\n\t<\/tr>\n\t | \n\t\t4<\/td> | 0.93<\/td> | 0.95<\/td> | 0.87<\/td> | 0.87<\/td> | 0.92<\/td>\n\t<\/tr>\n\t | \n\t\tLarge<\/td> | 0.94<\/td> | 0.96<\/td> | 0.87<\/td> | 0.89<\/td> | 0.79<\/td>\n\t<\/tr>\n<\/tbody>\n<\/table>\n<\/pre>\n","protected":false},"excerpt":{"rendered":" Note: This page contains the data source links and source code used in my “Fama-French Factor Loadings for Popular ETFs” post and my “Fundamental Indexing: Up and Running for 5 Years” post.\u00a0 If you are looking for a detailed tutorial on how to run the Fama-French regressions using R, then check out my screencast here. […]<\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":145,"menu_order":0,"comment_status":"open","ping_status":"open","template":"","meta":[],"_links":{"self":[{"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/pages\/892"}],"collection":[{"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/comments?post=892"}],"version-history":[{"count":31,"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/pages\/892\/revisions"}],"predecessor-version":[{"id":916,"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/pages\/892\/revisions\/916"}],"up":[{"embeddable":true,"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/pages\/145"}],"wp:attachment":[{"href":"http:\/\/www.calculatinginvestor.com\/wp-json\/wp\/v2\/media?parent=892"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}} | | | | | | | | |